Образование за рубежом

PlayPhrase.me - Учи английский

1.6. КОДИРОВАНИЕ ИНФОРМАЦИИ РАЗЛИЧНЫХ ВИДОВ

1.6.1. КОДИРОВАНИЕ ЧИСЕЛ.

Используя n бит, можно записывать двоичные коды чисел от 0 до 2n-1, всего 2n чисел.

1) Кодирование положительных чисел: Для записи положительных чисел в байте заданное число слева дополняют нулями до восьми цифр. Эти нули называют незначимыми.

Например: записать в байте число 1310 = 11012
Результат: 00001101

2) Кодирование отрицательных чисел:Наибольшее положительное число, которое можно записать в байт, - это 127, поэтому для записи отрицательных чисел используют числа с 128-го по 255-е. В этом случае, чтобы записать отрицательное число, к нему добавляют 256, и полученное число записывают в ячейку.

1.6.2. КОДИРОВАНИЕ ТЕКСТА.

Соответствие между набором букв и числами называется кодировкой символа. Как правило, код символа хранится в одном байте, поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными. Они позволяют использовать 256 символов. Таблица кодов символов называется ASCII (American StandardCodeforInformationInterchange- Американский стандартный код для обмена информацией). Таблица ASCII-кодов состоит из двух частей:

Коды от 0 до 127 одинаковы для всех IBM-PC совместимых компьютеров и содержат:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

    Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит:

  • коды букв национального алфавита;
  • коды некоторых математическихсимволов;
  • коды символов псевдографики.

    В настоящее время все большее распространение приобретает двухбайтная кодировка Unicode. В ней коды символов могут принимать значение от 0 до 65535.

    1.6.3. КОДИРОВАНИЕ ЦВЕТОВОЙ ИНФОРМАЦИИ.

    Одним байтом можно закодировать 256 различных цветов. Это достаточно для рисованных изображений типа мультфильмов, но не достаточно для полноцветных изображений живой природы. Если для кодирования цвета использовать 2 байта, можно закодировать уже 65536 цветов. А если 3 байта – 16,5 млн. различных цветов. Такой режим позволяет хранить, обрабатывать и передавать изображения, не уступающие по качеству наблюдаемым в живой природе.

    Из курса физики известно, что любой цвет можно представить в виде комбинации трех основных цветов: красного, зеленого, синего (их называют цветовыми составляющими). Если кодировать цвет точки с помощью 3 байтов, то первый байт выделяется красной составляющей, второй – зеленой, третий – синей. Чем больше значение байта цветовой составляющей, тем ярче этот цвет.

    Белый цвет – у точки есть все цветовые составляющие, и они имеют полную яркость. Поэтому белый цвет кодируется так: 255 255 255. (11111111 11111111 11111111)

    Черный цвет – отсутствие всех прочих цветов: 0 0 0. (00000000 00000000 00000000)

    Серый цвет – промежуточный между черным и белым. В нем есть все цветовые составляющие, но они одинаковы и нейтрализуют друг друга.
    Например: 100 100 100 или 150 150 150. (2-й вариант - ярче).

    Красный цвет – все составляющие, кроме красной, равны 0. Темно-красный: 128 0 0. Ярко-красный: 255 0 0.

    Зеленый цвет – 0 255 0.

    Синий цвет – 0 0 255.

    1.6.4. КОДИРОВАНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ.

    Рисунок разбивают на точки. Чем больше будет точек, и чем мельче они будут, тем точнее будет передача рисунка. Затем, двигаясь по строкам слева направо начиная с верхнего левого угла, последовательно кодируют цвет каждой точки. Для черно-белой картинки достаточно 1 байта для точки, для цветной – до 3-х байт для одной точки.

  •